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ABSTRACT

A method of imposing a binary classification on a target signature is described

that transforms a sequence of signatures into a binary-valued time series using the

theory of runs. Under the assumption that the time series can be treated as a set of

Bernoulli trials, a Bayesian method of estimating a probability density characteriz-

ing the outcome of each trial is considered. The density is used to detect signature

events which are found to be rare with respect to the classification imposed on

the signatures. Finally, tests of homogeneity are used to partition the observed

signatures. when necessary, into equivalence classes having the same density char-

acterization.
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1. INTRODUCTION

Many thousands of Earth-orbiting targets are routinely tracked by ground-based radar and
optical sensors. These sensors provide positional measurements of sufficient quality to maintain a
catalog of accurate orbital information about the targets, and help keep track of a growing inventory
of orbiting payloads and debris. Most of the target signatures (the normalized received-power time
series) obtained as a by-product of the tracking operation are currently discarded.

It is interesting to contider if these incidental signatures can be used to obtain additional
information about the characteristics of the targets. The principal difficulty in using these data is
the lack of any automated analysis tools to reliably process the large number of signatures currently
produced. The methods must be simple and broadly applicable due to the large amount of data
and the varietx of signature and sensor behaviors. This report describes some simple theory for
using these incidental signatures to monitor the behavior of targets.

Target signatures obtained during routine t- cking of high-Earth-orbit targets by ground-based
radars have a duration of at most a few hundred seconds. about the time required for making the
precise position measurements used to update the orbital model for the target. For low-Earth-
orbit targets the signal-to-noise ratios (SNRs) may be large enough to obtain the required position
measurements within a few seconds. In either case. during these tracking times the sensor pointing
will not change very much.

Then if the target is three-axis stabilized it wvill present a nearly constant viewing aspect to
the sensor over the duration of the track. For this reason even the signature of a target with
a very complex shape can sometimes be characterized as being due to a target with constant,
nonfluctuating cross section. The SNR at the sensor receiver will not always be large however.
so that the receiver signal associated with a track of such a three-axis stabilized target is best
modeled as a stationary random process, generally chi-squared with a number of degrees of freedom
determined by the receiver's signal processing algorithms.

If the target exhibits rotational motion with respect to the sensor line of sight (LOS) over
the tracking time, however, the average value of the observed signature will generally change.
The signature will exhibit trends and other nonrandom fluctuations. This might be the case with
orbiting debris, inactive payloads, or spin-stabilized payloads. A notable exception is a sphere-
like object whose cross section is not viewing-aspect-angle dependent-it will present a constant
cross-section signature regardless of its rotational motion.

Thus a statistical test for a random process applied to the target signature will have different
outcomes depending on, among other things. the stability of the target and the viewing geometry
of the target, sensor encounter. Such statistical tests have enjoyed a variety of uses in science and
engineering. By utilizing one of them each target signature can be tested for randomness. and
based on the result each target signature can be classified as being a stable signature (passing the
test for randomness) or an unstable signature (failing the test for randomness).



There are two interesting things about this approach. First. the target signature itself is re-

duced to a single binary bit of information. i.e.. whether the signature collected during the track
passes or fails a test of stability. Other independent variables such as time, sensor pointing, and

so forth, will prove necessary in utilizing this single bit of information to characterize the target

behavior, but the transformation of the entire signature to a single binary bit is as extreme a com-

pression scheme as can be practically imagined. The compression operation somewhat desensitizes

the signature processing restlts to the realities of sensor measurement artifacts and provides greatly
reduced database storage requirements.

Second. just as the time series of instantaneous power measurements (which make up the

signature of the target) provide one of the most commonly used observables for characterizing the

target behavior over the duration of the track. the signature stability test results form a discrete

series of binary observables which can be used to characterize the behavior of the target over its

orbit. and perhaps its operational life. These signature stability test results will have proven useful
if they can be used to fuse. or combine, the information from many tracks into a characterization

of the target. To show that this is possible. for each target the signature stability test results will
first be used to compute a density function associated with the probability of observing a stable

target signature. The probability density is the means of fusing information and characterizing the

object.

There are at least two ways to demonstrate the utility of this density function as a charac-

terization of the target. First, if the density function indicates that the probability of observing a
stable signature for a given target is quite large. for example. then it would be interesting to know
when a relatively rare unstable signature is observed for the object. These rare signatures may hold

clues about attitude maneuvering of the target. or might announce a change in target behavior or

loss of attitude control. Thus the densities can be used to detect rare events which might reflect
characteristics of the target. If these events are rare enough. a substantial reduction in the amount
of signaLure data that must be manually reviewed as part of the process of monitoring a space

object's behavior signature is accomplished-an analyst looks mostly at a small number of rare
signatures and the process is partially automated.

Second. the probability density may depend on orbital geometry in such a way as to reveal

addi'ional clues about object behavior. Some targets are more likely to exhibit unstable signatures
when the sun. the target and the sensor are nearly collinear. This is presumably due to attitude
control related to alignment of solar cell panels used to power the target. but regardless of the
physical reason. it is a statistically demonstrable phenomenon. This behavior has been noted before.

at least in 11. The dependence of the probability density on this and other geometric variables
such as the true anomaly and sensor elevation can be quantified as part of the characterization of
the normal behavior of the target.

This report collects the theory and illustrates it with a few simple examples. The numerical
results include the algoritninic computation of the density function target characterizations and

the detection of rare signature events, as well as a demonstration of the statistically significant
dependence of the signature stability results on orbital geometry.
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Throughout this report classical methods in nonparametric statistics, estimation, and hypoth-
esis testing are utilized. Section 2 describes a method of imposing a binary classification on a target
signature to transform a sequence of target signatures into a binary-valued time series. Under the
assumption that the time series can be treated as a set of Bernoulli trials, a Bayesian method of
estimating a probability density characterizing the outcome of each trial is considered in Section
3. In Section 4, the density is used to detect signature events which are found to be rare with
respect to the classification imposed on the signatures. Finally. in Section 5 tests of homogeneity

are used to partition the observed signatures. when necessary. into equivalence classes having the
same density characterization.



2. BINARY CLASSIFICATION OF SIGNATURES

Motivated by the discussion of Section 1. a test for randoniness is proposed as the criterion for
classification of target signatures because. under the assumed observation conditions. a three-axis
stabilized target will usually produce a mathematically random signature. ('onsequently, the terms
"'randorn signature" and 'stable signature" will be used interchangeably. Notable exceptions to
this rule are the sphere-like target with a cross section which does not depend on viewing aspect
angle and the undersampled target with a fluctuating cross section having a bandwidth which is not
sniall compared to the sensor sampling bandwidth. These targets will often have a mathematically
random signature regardless of the true stability of the target or the observation conditions.

It will be argued in Section 5 that a test of homogeneity will also be needed to interpret the
results of the signature classification. Although a number of distinct implementations of tests of
randomness and homogeneity are available. tile theorv of run, call be applied to both problems 2
In order to avoid the introduction of two separate distribution theories, the theory of run, will he
used to implement both the test for randomness (neede(d to classify the target signatures in this
section) and the test of homogeneity (needed in Section 5). This theory is therefore recalled here
and only referenced in Section 5.

The theory of runs is well known in nonparametric statistics, so a detailed discussion is not
needed here. In this report a random signature is defined to be a signature that can be transformed
into a sequence of Bernoulli trials by thresholding - tile probability that any sapnille of the signature
falls above a threshold is a constant value P. independent of the value of all' other sample and
dependent on the value of the threshold 3. 3. In Figure 2-1. a threshold value has been set in order
to compute ihe number of runs.

The number of signature samples above the threshold is denoted by n, and the number below
by ti.2. The value of the threshold is not critical. Often the sample median value of tile data set
is used. so that n, = n.. The runs statistic R is defined to be one plus the inumber of times that
the time series crosses (either while increasing or decreasing) the threshold value -,. The density
of R under the hypothesis of randomness is derived by a combinatorial argument such as the ones

found in 4 or 5 and is given byn,: 1 ) .1)) ,, ,
(r - 1),,2 (r -3), 2 ( 3)12 r 1)l 2

f R (r ) - ( 1

when r is odd and

r/2 I r r2- )
fR(r) = (2.1)( h )
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Figure 2-1. .4 to-tailed test for randoinnes, based n the theory of runs is used to
classifyh the signature.

when r is even.

If the observed number of runs is either too large or too small then the hypothesis of randomness

is rejected. A two-tailed test based on the distribution of Equation (2.1) tests the hypothesis

of randomness bv fixing the desired probability of erroneously classifying a random signature as

nonrandom (called a type I error). Two thresholds are set. ad if the number of observed runs R

is above the larger or below the smaller threshold. then the hypothesis of randomness is rejected.

The thresholds are generally set such that thcv determine two rejection regions of approxi-

mately equal probability under the assumption of randomness. The sum of these probabilities is

set to the desired probability of committing a type I error. If the distribution under an alternative

hypothesis can be formulated, then the probability of erroneously classifying a nonrandom signa-

ture as random can be set (called a type II error). This is done, for example. in [51 using a Markov

model as the alternative hypothesis. There is no physical reason, however, to formulate such an

alternative hypothesis in this application-it is satisfactory to accept the hypothesis of randomness

with a specified probability of erroneously classifying a random signature as nonrandom.

The number of signature samples. to be useful, is generally large enough that the distribution

of Equation (2.1) has a (;aussian envelope. In 4' the mean E[R and variance V!R of R are

determined to be



ER - 2n i112
E'R'= I T 1r

and

2n lii.(27ln - n) (2.2'
T2(n - 1)

with n = , n- so that when both nl and n.2 are greater than. say. 10 the statistic

R - ER'

\VR

can be treated as normal. avoiding evaluation of Equation (2.1).

Example of boLh a stable and an unstable signature as determined by the test for randonineis
with a probability of a type I error equal to 10- 3 are showii in Figures 2-2 and 2-3.

Mathematically. *he distinction between a stable and an unstable signatur'e is determined bv
the theory of runs. But intuitively the unstable signature will have an average value that tends
to change. a phenomenon called a trend. The stable signature will have an average value that
does not have a significant variation. In each figure a small area of the complicated signature
structure is expanded to show an average value suggested by a cubic polynonial fit. The normal
approximation to Equation (2.1) was actually used to implement the test. so the statistic 'Equation
(2.3)' was tested against the normal distribution.

The procedure specified in this section allows each target signature to be tested and declared
either stable o,, unstable with a controlled probability of erroneously declaring that a stable signa-
ture is unstable. The results of these tests can be used to characterize the probability that a target
signature will be stable. assuning no chiange in target behavior. This will be made more precis. in
the next section.
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Figure 2-2. Stable signatures. such as this one determined by the runs test. tend to
have an average value that does not change. The fluctuations are due to measurement
noise, not target cross-section variation.
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Figure 2-3. ('rnstable signatures. such as this one determined bY tile runs test, tend to
have a changing average v~alue. The trend is due to target cross-section variation caused
by' a change in viewing aspect and the complex shape of the target. The fluctuations
around the trend are due to measurement noise.
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3. PROBABILITY DENSITY CHARACTERIZATION

Section 2 described a test for stable signatures which implements a binary classification of each
target signature. In order to discuss this in the language of experiments having bi,.ary outcomes
the value true will be associated with each signature which passes the test for st.zL:hi, and the
ralue false will be associated with each signature that fails the test for stability. Each test of a
signature will be referred to as a --trial.- Ultimately. it is desirable to use a data base of trial results
oil a particular target to characteri7e the probability of declaring a signature to be stable on the
next occasion that the target is tracked. tinder the assumption that the target has not changed its
characteristic behavior. Tile development of such a characterization in this section is the next step
in the evolution of the methodology which will be continued in Sections 4 and 5.

Specifically. it is assumed that the results of a sequence of target signature tests on a given
target. which has not altered its characteristic behavior. can be described by a Bernoulli trial 53'.
Bv assumption. the outcome of each trial is independent of the outcome of any other trial. In
addition it is assumed that each trial will have an outcome of true with unknown probability T.

The Bernoulli trial first appeared in tile test for stable signatures of Section 2 in conjunction with
the theory of runs.

The value of the unknown probability T is clearly restricted to the interval 0 < T < 1. To
incorporate such an interval constraint. suppose that T is itself a random variable and derive all
attributes of T from the conditional density PT 0(t 0). which will be chosen from a class of densities
with support restricted to the closed interval 0. 1. The random variable E is the number of trials
which are observed to have an outcome of true.

The conditional density PT e(t 0) itself serves as the characterization of the target referred to
in previous sections. It provides the basis for the hypothesis testing needed to detect rare signature
events in Section 4. Its dependence oil certain geometric independent variables necessitates the
tests of homogeneity in Section 5. An estimate T of a realization of T can be obtained as the
maximum or mean of this conditional density.

Choosing this method of characterizing the probability of observing a stable target signature
i. a commitment to what is commonly called a Bayesian approach. which relies heavily on the
modeling density PT(t). Other methods place more emphasis on the sampling density p T(01 t).
(The sampling density is required in the Bayesian approach also. but takes a more indirect role.)
Therefore. in the sequel the important probability measure will be the conditional density PT 8(t 9)
which will be implied in the operations of expected value and variance. In order to reduce some
of the notational burden the subscripts will be dropped from the probability density notations
throughout the remainder of this section.

The density p(t, ) can be written in terms of the densities p(O' t) and p(t) by writing the two
equivalent expressions for the joint densitY of 0 and T as

p(6. t) = p(t O)p(O) = p(o t)p(t). (3.1)

and noting that

l1



p() = p(9, t) dt 0 p(OIt)p(t) dt. (3.2)

It follows from Equations (3.1) and (3.2) that

p(t) - Ip(9-t)p(t) _ p(OIt)p(t)
p(6) f0 p(OIt)p(t)dt"

It follows from the assumptions that the density for the number of trials E which have an
outcome of true out of N trials is given by a binomial density. Thus

p(OIt) = b(N.t.O) ( ) t0(1 t) -0. 0 < t < 1. (3.4)

It remains to choose a form for the density p(t). A useful density for this purpose (called a
beta density) is defined by

pMt=p = BIo,,3 0<t<1. >0. 3>0 (3.5)

0. otherwise

where

B (a.3) = foX0-1 (1 - x~-1dx. (3.6)

The function B(o. 3) is called the beta function and is introduced to normalize the integral of
Equation (3.5) to one. Restricting at and 3 to integer values results in the well-known identity

(o )!3 1)!
B(o. 3)= -( 1)!(3 .3 = 1.2.3.... (3.7)

(a 3 - 1)

which can be obtained by repeated application of a standard integral reduction formula.

Combining Equations (3.4) and (3.5). the numerator of Equation (3.3) is

p(O0 p) N B(a3) 0 < t < 1, a > 0, 3 0. (3.8)

Integrating Equation (3.8) determines the denominator of Equation (3.3) to be

o1 ( N ) B(O--aN -0+3) (3.9)
(Otpdt=0 B (a. 3)

12



from the definition of the beta fiinrtion Equation (3.6)i.

Finally. by combining Equations (3.8) and (3 9). it can be seen that the conditional density

'Equation (3.3)} is another beta density

p(t-10)B ..-- 3 . 0<t< 1, O0. 3> 0

p 0. otherwise

= p(t.9 - 0. N - 0 - 3). (3.10)

A comparison of the a priori probability density !Equation (3.5)i with the conditional density
Equation (3.10)' shows the effect of observing an outcome of X random trials on the density

parameters.

Typical numerical results are illustrated in Figure 3-1 where densities for two different targets

have been computed based on twenty signatures from each target.

4 N
4

3

2/
LESS STABLE MORE STABLE

/TARGET /TARGET

/ /

1 i

/

0 - / .- /

0 02 04 06 08 1 0

PROBABILITY

Figure 3-1. These densities were computed from Equation (3.10) using twenty sig-
natures from each of two targets. TYpicaIlY; the computed density' characteri .zati .on
of a target whose signatures usuallyv appear unstable has most of its probability mass
to the left of the density characterization of a target whose signatures usually appear
stable.

In both cases a uniform prior density p(t) was assumed by setting a = 3 = 1. The difference
in the computed densities reflects the fact that one target, which is inert, is less likely to appear
stable than the other target. which is uinder active attitude control.
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The mean ET 1] of the conditional density (Equation (3.10)1 is given by

1[JO tfo to~ _ t)N -_Oi_3_
E[T10) = B(O+ ,N-O+ 3)Jt. (1t- ldt

B(O+ + 1. N - 0 + 3)
B(O+a,N-±+/3)

(0 + a)! (N-- t+3- 1)!
(N +a + 3)! (0 +-1)!

N + +3 3= 1.2.3.... (3.11)

where a and 3 are restricted to integer values because the special case evaluation of the beta

function [Equation (3.7)] has been used.

Similarly compute

ErT' 10 t 1 -0-1 - t) N - O-3 - 1 dt
B(0 o. N -9 + 3)

B(O a + 2. N - 0 + 3)

B(O + a, N - 0 - 3)

(0+ --- 1)! (N- -a±3-1)!

(N- a+3--+1)! (0+o- 1)!

(0 1 ) E T10, o,3 = 1.2.3.... (3.12)(No - 3 - 1)

which is written in terms of the conditional mean. Equation (3.11).

If the a priori density p(t) for T is given by Equation (3.5). then after N trials of which 9 had

an outcome of true. an estimate t of the realization of T is given by

T = E[TJO] (3.13)

and its mean squared error over the ensemble of experiments consisting of N trials. - of which

have outcomes of true is

E[(T - T) 2 10 =1 ET 2 1] - T 2

t) (NT). c 3 = 1.2.3 (3.14)

The estimate Equation (3.13)] provides some indication of the probability of observing a
stable signature for a target based on its characteristics over the previous N tracks. By providing

a measure of estimate error. the mean squared error [Equation (3.14)] can be used to determine if
N tracks is enough to estimate the probability with the desired accuracy.

14



Necessary conditions of optimality. which set the derivative of Equation (3.14) with respect to
E to zero. indicate that an extreme value of Equation (3.14) occurs at E = (N -4- 3 - a)/2. This
turns out to be its maximum. Therefore an upper bound on the mean squared error of Equation
(3.14) is given by

E[(T - t)210 I E[(T-t) 2 E=(N +3-a)/21= 4(N--aI3+l) (3.15)

For tho case that a = 3 = 1 the prior density p(t) is uniform and the square-root of Equation
(3.15) is plotted versus N in Figure 3-2.

0.3

Z
0
Ca 0.2 -z
O 0

0

w

M 01
4

0

0 1.

0 20 40 60 80 100

NUMBER OF TRIALS

Figure 3-2. An upper bound on the square-root of the mean squared error [Equa-
tion (3.14)] of the estimate [Equation (3.13)] of the probability of observing a stable
signature is plotted versus the number of signatures N already observed under the
assumption of a uniform prior density for p(t).

The estimate of Equation (3.13) and its error [Equation (3.14) or (3.15)] are useful in assessing
whether an observed trial, either a stable or unstable signature. is a statistically rare behavior
of the target. Procedures for uncovering such rare behaviors are made more precise in Section 4
where the conditional density 'Equation (3.10)] is used to directly test for evidence of unusual, or
changing, stability behavior of the target. As seen from Figure 3-2. the error in the point estimate
of probability might be fairly large. greater than 0.1. until more than 20 trials have been conducted.
Fewer trials are needed if the only interest concerns whether or not T lies within a range of values.

15



This application, an interval estimate, will turn out to be the most important and is developed
next.
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4. RARE EVENT DETECTION

The first application of the probability density characterization of the target will be to auto-
matically isolate examples of rare behavior of the target signature. The behavior in this case is

the apparent stability, or lack of it. as evidenced by examples of target signatures. Rare behavior
observed in a new target signature might indicate a change in target behavior or otherwise provide
an indication of its operational characteristics.

The probability density [Equation (3.10)1 incorporates the previously observed target signa-
tures into a characterization of the probability of observing a stable or unstable target signature. It
is used to formulate the appropriate test to determine if stability or instability is a rare behavior of
the target, and then isolate any new signatures (either the stable or the unstable) which represent
the distinct minority. This is easily done because of the work accomplished in the previous sections.

Precisely. a rare (signature) event is either a true or a false outcome of a trial (the result of

testing a signature) that occurs with probability less than ?. That is. a rare event is an experimental
outcome of true when T (the probability of observing an outcome of true) is less than R?. or an

experimental outcome of false when F = 1 - T (the probability of observing an outcome of false)
is less than 1?. To be physically intuitive, the value of 7? should be small, certainly less than one

half.

Similarly, a common event is an outcome of a trial that occurs with probability greater than
I - 7?. This definition is convenient for discussion, but redundant because it follows from

T < 1? F > I - R. and F<7R T>l- (4.1)

that an outcome of true is rare whenever an outcome of false is common. and an outcome of false
is rare whenever an outcome of true is common.

Although an observed signature is either rare or not. the observer does not know a priori
which is the case because specific knowledge of the value of T is lacking. and there is always some
uncertainty in deciding if a signature should be declared rare based on an interpretation of previous
trials. The first encounter of this sort of uncertainty was in Section 2 where a two-tailed test was
proposed to decide if the signature itself was stable or unstable-there was a (controlled) probability
that an incorrect decision might be made under an assumption of stability.

At some point an observer is asked to await the next trial and either declare it to be rare
or not. At this time. N previous experiments (where N might be 0) have been performed. It is
recognized from Equation (3.10) that the probability Pf that an experimental outcome of false is
rare is estimated by

Pf -j p(t. E ) o, N - e + 3) dt. (4.2)

Similarly. the probability Pt that an experimental outcome of true is rare is estimated by

17



Pt p(t, E + o. N - E + 3) dt. (4.3)

Because each trial either represents a rare event or not. the probability that an outcome of
true is not rare must be 1 - Pt. Similarly, the probability that an outcome of false is not rare must
be 1 - P1 . A probability threshold p can be chosen, suppose on the probability of error. Then a
trial with an outcome of true is declared a rare event whenever Pt > 1 - p. Similarly, a trial with
an outcome of false is declared a rare event whenever P1 > 1 - p.

An outcome of a trial need not represent either a rare or a common event; perhaps not enough
signatures have been tested for the probability threshold 1 - p to be crossed. To allow for this
possibility the notion of an armed introduced. If it is possible, depending on the trial outcome, to
declare a rare event on the next trial, the test for rare events is said to be armed.

When a test is armed the hypothesis that the probability T is either greater than 1 - 1Z or less
than R has been accepted with probability at least 1 - p. and the next experimental outcome can
be declared either rare or common. When the test is armed for a particular target. its signatures
are actually being monitored for unusual behavior. If the test is not armed for a particular target.
then the target is not currently being monitored for unusual behavior.

Figure 4-1 graphically presents some the results concerning rare event detection for a target
which is generally stable. The graph plots several probabilities versus time for the target. A
point probability estimate based on Equation (3.13) is plotted along with the probability that T is
greater than 1 - 1Z with R = 0.2. Suppose that the probability threshold for declaring a rare event
is 0.95. Then the latter probability crosses this threshold 18 days (and 14 tracks) after the system

is initialized, arming the test. Stable behavior is declared common for this target, and an unstable
signature will be declared rare. No rare (unstable) events occur however for another 12 days. when
the first rare unstable signature is observed. The second rare unstable signature is observed 10
days later. (Actually, on that day 2 consecutive unstable signature events were observed within a
few minutes of each other.)

A typical stable signature for this object is shown in Figure 4-2 and the two rare unstable
signatures are shown in Figure 4-3.

Two signatures out of 132 were identified by the test for rare events, greatly reducing the

number of signatures which need to be manually reviewed to monitor the behavior of the target.
These unstable signatures are typical of small changes in target attitude, not a loss of attitude
control; but had a catastrophic destabilization of the target occurred after day 18 of monitoring, it
would have been immediately detected by the test.

0

The final application of the density characterization of the target involves studying its depen-
dence on various independent variables. The density may change, subject to where in the orbit
the target signature is collected. This is because the normal behavior of the target may depend on
orbital variables. Also, the density might change depending on the sensor viewing geometries. Test-
ing the dependency of the probability density [Equation (3.10)] on these variables is accomplished
by invoking the tests of homogeneity in Section 5.
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Figure 4-1. Some of the probabilities computed in the rare event detection problem

are shown for a target which usuallyv appears stable. Three rare events in 132 signatures

were automaticall*" detected. Hollow sYmbols represent signatures declared to be stable

while filled sYmbols represent signatures declared to be unstable.
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5. HOMOGENEITY OF THE CLASSIFICATION STATISTICS

Up to this point the signature runs statistics for a given target have been treated as a time
series. i.e., a discrete real (random) function uf time. It may be tile case that other independent
variables provide a more natural coordinate ,Nstem for characterizing target behavior. For example.

if the target consistently points at the center of the Earth, then sensor elevation, and not time. may
be a more natural independent variable. Some targets in eccentric orbits might perform certain
functions in relationship to apogee or perigee so that the true anomaly may be an important
variable. Solar cell panels may be kept ,-iented with respect to the sun making the angle between

the sensor-to-sun vector and tile sensor-to-target vector important (celled the sun-sensor-target

angle) and so forth.

In Figure 5-1. the runs statistics from many signat.r,s of a target are plotted against time and
the sn-sensor-target angle. The thresholds for the two-tailed test accepting the stability hypothesis
are shown as dotted lines for a significance of 10 -3. From the plots it is not unreasonable to conclide
that the stability hypothesis is rejected randomly over time, but that rejection is highly dependent
on the sun-sensor-target angle. This suspicion will be verified by tGe tests of homogeneity developed
in this section.

From now on other well orderings of tile target signature runs statistics are considered. The
index of the statistics { .\,} might correspond to increasing elevation, for example. rather than
increasing time. Ir. particular. the dependence of target probability density characterization (as

developed in Section 3) on these geometric variables is considered. A simple randotm process model
for the sequence of target signature runs statistics is ,roposed which consists of an orderid sample

of independent random variables, X, written as

. = A .. ..... VL -. 1 } {1 .1 2 L. Zi .. Z.1 }

"here

Y- fy(y). Z, - fz(s) and fy(y) - fz(:). (5.1)

Thus the post ulated dependence of the probability density characterization of the target on the
Sidependent variable is a simple one--samples from one of two distinct populations are observed.

depending on whether or not the value of the independent variable exceeds a threshold. It is
reasonable to attempt to determine a confidence interval Lor L. often called the disorder value of
the process 6'. from a realization of X. Such nonstationarity of signatre process models has been
demonstrated before (for example. in '7') where detrended signature data have been successfully
fit to autoregressive process models within a track in order to detect time transitions within the
signatures. These transitions are loosely analogous to the above disorder values. Some differences
between that application and the one in this report include the use of independent variables other
than time atid different random process models.
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represent signatures declared to be stable while filled symbols represent signatures
declared to be unstable.

24



There are several ways to pose an appropriate question about the sequence of target signature
runs statistics. Assuming that X, - f.V, (x,), the general question of how the densities fx.,(x,)

depend on i is tile problem of homogeneity in statistics. Again. nonparametric statistics provides
several useful approaches. Equation (5.1) suggests that a two-sample method (using a rank statistic)
such as originally proposed by Mann and Whitney 81 or Wilcoxin [91 could be used. A more
recent discussion of these methods can be found in J10]. Other possibilities include the two-sample

adaptation of the Kolmogorov-Snmirnov test 51 and a method of Wald and Wolfowitz described in

One interesting way to use these tests is to extremize the test statistic as a function of a point
estimate L of L. In -12 . for example. Darkhovskh shows that such a parameterized test can be
used as a consistent estimator of the disorder value L. The problem with this approach is that no
measure of the error in the estimate is provided.

The following alternate approach based on hypothesis testing is proposed. This approach yields

an interval containing L with some probability, not a point estimate t of L. Note that the model
of Equation (5.1) satisfies the following:

1. L runs statistics indexed from 1 to L have the same distribution.

2. .11 runs statistics indexed from L - I to L - 11 have the same distribution, and

3. Runs statistics indexed from 1 to L do not have the same distribution as the
runs statistics indexed from L -1 to L - .11.

The approach involves capturing these features in a set of hypotheses that can be tested to develop
a confidence region for the disorder value L. Assuming that X, -- f.\- (x,) for I < k < L - M,

define tile hypotheses

Hy(k) : fx 1 (Xl) = fx 2 (x2) .... fX.\(X,).

Hz(k): f.v,(xk 1) = f~V-.(xk-2) .f-vL,,(XL-.1)

and

HB(k) : f.y,(x) = f.y-,(xm) for 1 < 1 < k and k < rn < L + l. (5.2)

Rather than introduce new distribution theory, the theory of runs summarized in Section 2 will
be used to compute a test statistic and its distribution under each of the hypotheses in Equation
(5.2). The method discussed in Section 2 can be used directly to test hypotheses Hy(k) and Hz(k).

The \Vald-iWolfowitz method '11'. 5 can be used to test HB(k).

An implementation of the Wald-Wolfowitz test begins with the following transformation. Form
the sequence Ii' = {i i11Ii2.... 1 1 L-A I} of the geometric variables of interest such that IWI is
the value of the independent variable associated with ,1 e.g., i*, was the observed value of the



independent variable when the runs statistic Xi was observed. By construction. Ii'i+) > li'i for
i = 1.2.... L + Al - 1. By a reordering is meant an invertible function r : I - I from I =

{1.2 .... L + M} onto . Define the sequence

IV = W1, ~ T .... I r' -,%1} (5.3)

by setting

11- = Ir(i) for i = 1.2,...L + Al (5.4)

where the reordering r satisfies

m > n ==± X-(,, > X (. (5.5)

The result is that the sequence of geometric variable values IV have been reordered to corre-

spond with increasing values of the associated signature runs statistics. To test HB(k) based on
a method of Wald and Wolfowitz !117. the runs test of Section 2 can be applied to IW with the
threshold set to (11'k + Ii'k_1)/2.

Thus it is possible to compute the sets

Sy = {Ii Hy(i) is accepted with significance ay}. (5.6)

Sz = {i Hz(i) is accepted with significance oz}. (5.7)

and

SB = {i HB(i) is accepted with significance QB}. (5.8)

Recall that the significance of a test is the probability that the test will reject the null hypothesis
when it is true. so that generally the significance is set to a small value. A confidence region CL
for the disorder value L is given by

CL = SY SZ S, (5.9)

where Sc denotes the complement of SB.

The probability that the disorder value L will be 6rroneously omitted from CL cannot be
computed without a specific assumption on the distribution of the runs statistics under a hypothesis
corresponding to the alternate of HB. However. a lower bound on this probability is obtained by
realizing that such an error will be made at least as often as either Hy(L) or Hz(L) are erroneously
rejected. Thus

P[L CL I L is a disorder valuel > aaz + ay(1 - ckz) + az(1 - ay)

= - ayoz + az. (5.10)
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The bound will tighten as the difference between fy(y) and fz(z), as measured by the test of
HB(L), becomes greater.

Under the hypothesis that fy(y) = fz(z). a bound on the probability that a value k will be
erroneously placed in CL is obtained by realizing that such an error will occur no more often than
HB(k) is erroneously rejected. Thus

P~k E CL I fl(Y) = fz(z)] <_ cB. (5.11)

This provides some certainty that a disorder value will not be declared when none exists, but good
behavior of the confidence interval under other alternative hypotheses cannot be guaranteed.

Now define the sets

X'= {XE X i <k for all kr CL} (5.12)

and

S{Xi E X i > k for all k E CL}. (5.13)

These sets can be used to replace the original set X of runs statistics by two smaller sets with some
confidence that the two density characterizations obtained from the smaller sets via the techniques
of Section 3 will be significantly different.

In Figure 5-2 some of the probabilities associated with rare event detection are plotted for the
target whose runs statistics were used in Figure 5-1. This is analogous to Figure 4-1 except that the
test of homogeneity has first been applied with 10-2 significance to replace the original sequence of
runs statistics with the two smaller sets given by Equations (5.12) and (5.13)-one containing the
trials conducted within 35' of solar alignment, and the other containing trials conducted greater
than 500 from solar alignment. 1 Here solar alignment is the condition that the sun-sensor-target
angle is either 0' or 180'. It can be seen from the point estimate of the probability of observing a
stable signature in the two regions (and by recalling the example of Figure 3-1) that the densities
themselves must be quite different. Stability is a common event away from solar alignment-the
test is armed in this region. Neither stability nor instability are rare near solar alignment-the test
is not armed in this regioli. No rare events have been detected.

If the test of homogeneity had not been applied then the evolution of probabilities in the rare
event detection problem appear as in Figure 5-3. The test for rare events is not armed in this
case and the target is not being monitored for rare signature events in any portion of the orbit.
If the test of homogeneity had not been used and the test for rare events had armed. then many
rare signature events might have been declared. Therefore another important effect of the test for

1 Due to the scope of the project, only a partial implementation of the test described in this

section was implemented. Only the set S' was computed in expression (5.9), yielding an upper
bound on the interval CL.
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Figure 5-2. The test of homogeneity has established the dependence of the probability
of observing a stable target signature on the sun-sensor-target angle for this target.

homogeneity in some cases is to reduce the number of rare events by disarming the test in the
region of the independent variable where globally rare behavior is locally not rare.

This behavior is illustrated by the examples in Figure 5-4. Probabilities for another target are

shown with and without the test of homogeneity. Without the test for homogeneity the dependence

of the probabilities on the sun-sensor-target angle is ignored, the test for rare events arms and seven
rare events are detected. (Two of them occur nearly simultaneously and are hard to distinguish
in the top graph.) These seven rare signature events, which are all observations of an unstable

signature, occur near solar alignment. After the test for homogeneity has been applied with 10-2

significance, the signatures are partitioned into two sets corresponding to Equations (5.12) and
(5.13). Each signature from the set taken near solar alignment occurs within 15' of alignment-
this is the only portion of the orbit where the unstable signatures are observed. The other set of

signatures all occur greater than 25' from solar alignment.

After application of the test of homogeneity the test for rare events does not arm near solar

alignment, hence no rare events are declared. The results of the test of homogeneity suggest that
stability for this target is common away from solar alignment, as it does for the target in Figure

5-2. In this case the test for homogeneity has also reduced the number of rare event detections, by
correctly associating unstable signatures with a region of the orbit where they are not rare.
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6. SUMMARY

Based primarily on issues of availability, approximately 1600 signatures from 38 high-altitude
targets were collected for processing with algorithmic implementations of the theory presented
in this report. The number of signatures per target ranged from 17 to 158, with most targets
yielding less than 50. The data were collected over approximately an 80-day span (see Table 6-1).
The examples used to illustrate the ideas in this report were mostly drawn from this population.
Throughout the tests. levels of significance were fixed and not varied on a target-by-target or
signature-by-signature basis. Varying the parameters might undesirably skew these results with
respect to the performance obtained in an automated system. All the results depend. however, on
the population of targets selected. It is felt that these results might be typical of high-Earth-orbit
targets sensed with intermediate wavelength radar.

TABLE 6-1.

Summary of Experimental Results

Percent of Percent of i Rare Event Percent of
Targets All Targets Tracks All Tracks Detections Tracks

Totals 38 100 1607 100 32 2.0
Armed Tests 30 79 1357 84 32 2.3
Solar Dependent 10 . 26 629 J 39 8 1.3

The flow of data and the computational steps are illustrated in Figure 6-1. There are many
generalizations from the two-Bernoulli-trial case to Al-Bernoulli trials, but none are shown in the
figure because only a two-trial model 'Equation (5.1)] was used in this report. Each of the com-
putations shown in the figure have been previously described in this report and each computation
was applied to every target and signature obtained for the numerical work.

A 10- 3 significance was used in the signature classification test of Section 2. Because all the
signatures consisted of between 800 and 10000 samples, the large population statistic [Equation
(2.3)j was used and tested against the normal distribution. The notion of rare was quantified to
mean "occurring less than 20% of the time" so that 7? was set to 0.2. At the conclusion of the
experiment the test for rare events had armed for 30 of the .38 targets-armed being the condition
indicating that the target has been successfully characterized and rare events can be declared (See
a more detailed discussion in Section 4.) The notion of an armed test is necessary because a
practical algorithm cannot be allowed to draw conclusions from insufficient data. All rare events
were declared with a significance of 0.05. Almost 1400 of the signatures collected were from targets
for which the test had armed.

The test for rare signature events detected 32, about 2% of the total number of signatures pro-
cessed and less than 3% of the signatures processed through armed tests. Then for this population
at least. 98% of the signatures were handled by the algorithm-the remaining 2% might be given
to an analyst who could attempt to determine the importance of the rare signature events. For all
of the targets used in the experiment, stability was common and instability was rare.
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One of the first things that an analyst might have noticed is that in some cases, although the
rare events seemed to occur randomly in time, they were dependent on other geometric variables.The
idea of quantifying this dependence was formalized in the tests of homogeneity of Section 5, which
were run against the data for the sun-sensor-target variable.' Only this one independent variable
was tested. With a 0.05 significance, 10 of the 38 objects showed statistically significant dependence
on the sun-sensor-target angle.

1 Due to the scope of the project, only a partial implementation of the test described in Section

5 was implemented. Only the set S' was computed in expression (5.9), yielding an upper bound
on the interval CL.
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7. DISCUSSION

Robust and simple methods are needed to process the large amount of signature data produced
during the routine ground-based tracking of a catalog of orbiting targets. Currently, most of these

data are discarded. Calibrated cross-section time series are the most sophisticated techniques which

could be currently used to represent such a large and diverse set of measurements. But cross-section

time series fail to fuse. or relate, information from multiple tracks to form a characterization of

the target behavior. Furthermore. there are too many signatures available to examine them all

manually.

The theory behind a single bit processing system was described, using a variety of classical

methods from nonparametric statistics, estimation, and hypothesis testing theories. A series of

signatures obtained from the target over time are transformed into a time series consisting of only
a single bit of information from each signature. The binary-valued series captures a description of

the apparent target attitude stability, or lack of it. as a function of time and orbital geometry. Under
a reasonable set of physical circumstances this series can be treated as a set of Bernoulli trials, and

the associated probability density can be estimated. The density becomes a characterization of the

target over its orbit and perhaps its operational life.

The density can be used in at least two ways as a characterization of the target behavior.

First. by characterizing the normal behavior of the target. the algorithmic detection of rare signature
events becomes possible. If a target normally appears stable, signatures characterizing an instability

are flagged. If a target normally appears unstable. signatures characterizing stability are flagged.
For some targets neither behavior is rare, and no rare signature events are detectable. Second,

by examining the dependence of the probability density on the value of independent geometric

variables, such as true anomaly or the angle between the sensor-to-sun vector and the sensor-to-

target vector, attitude behavior related to the orbital position of the target becomes apparent.

Using these techniques, new information fused from a series of tracks becomes available to
analysts. It would be difficult, at best. to intuit these results by visual inspection of the large

number of original signatures. The results are free in the sense that the techniques can be applied
to signatures obtained as a by-product of tracking targets for positional measurements. Only

a small fraction of the original number of signatures. the ones declared to be rare, need to be

analyzed manually-thus a useful bulk filtering function is performed and the occurrence of the

rare event might be evidence of a change in the behavior of the target.
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